Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 10 results ...

Behm, M (2012) Safe Design Suggestions for Vegetated Roofs. Journal of Construction Engineering and Management, 138(08), 999–1003.

Dewlaney, K S, Hallowell, M R and Fortunato, B R (2012) Safety Risk Quantification for High Performance Sustainable Building Construction. Journal of Construction Engineering and Management, 138(08), 964–71.

Elghamrawy, T, El-Rayes, K, Liu, L and Odeh, I (2012) Performance of Temporary Rumble Strips at the Edge of Highway Construction Zones. Journal of Construction Engineering and Management, 138(08), 923–30.

Esmaeili, B and Hallowell, M R (2012) Diffusion of Safety Innovations in the Construction Industry. Journal of Construction Engineering and Management, 138(08), 955–63.

Ikpe, E, Hammon, F and Oloke, D (2012) Cost-Benefit Analysis for Accident Prevention in Construction Projects. Journal of Construction Engineering and Management, 138(08), 991–8.

Kim, B, Lee, H, Park, H and Kim, H (2012) Greenhouse Gas Emissions from Onsite Equipment Usage in Road Construction. Journal of Construction Engineering and Management, 138(08), 982–90.

Nassar, K and Hosny, O (2012) Solving the Least-Cost Route Cut and Fill Sequencing Problem Using Particle Swarm. Journal of Construction Engineering and Management, 138(08), 931–42.

  • Type: Journal Article
  • Keywords: Optimization; Construction costs; Earthwork; Construction equipment; Cut and fill; Optimization; Traveling salesman problem; Integer programming; Particle swarm; Shortest route problem; Earthwork planning;
  • ISBN/ISSN: 0733-9364
  • URL: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000512
  • Abstract:
    Several researchers have attempted to formulate and solve different classes of the earthwork allocation problem. Linear programming (LP) and integer programming (IP) techniques have traditionally been applied to minimize transportation costs and mass-haul distances associated with earthwork processes. However, typical formulations of the earthwork allocation problem do not consider the sequence of equipment movement and are, therefore, limited in their ability to establish a practical and workable hauling plan. A more complex problem, which is formulated and solved in this research, is the least-cost route cut and fill problem (LCRCFP). The primary objective of the LCRCFP is to determine the specific route to be traveled and the quantities of soil that construction equipment must haul to meet the desired grade while minimizing the total distance traveled. In this research, the LCRCFP was formulated as a mixed binary optimization problem and solved using a traditional branch-and-bound method and a particle swarm optimization (PSO) technique. Accordingly, this solution can provide efficient and practical hauling plans for construction sites. Furthermore, a linear variation of the problem, which is common for linear roadwork or utility construction, was also formulated and solved. Extensive computational results are reported for several randomly generated instances of the LCRCFP. Realistic problems can be effectively solved using PSO. Thus, the derived plan can be used in mapping and path planning and by on-site engineers. It can also be used for the deployment of unmanned construction equipment in autonomous vehicle control systems.

Porwal, A and Hewage, K N (2012) Building Information Modeling–Based Analysis to Minimize Waste Rate of Structural Reinforcement. Journal of Construction Engineering and Management, 138(08), 943–54.

Tatari, O and Kucukvar, M (2012) Sustainability Assessment of U.S. Construction Sectors: Ecosystems Perspective. Journal of Construction Engineering and Management, 138(08), 918–22.

Taylor, T R B, Ford, D N and Reinschmidt, K F (2012) Impact of Public Policy and Societal Risk Perception on U.S. Civilian Nuclear Power Plant Construction. Journal of Construction Engineering and Management, 138(08), 972–81.